首页> 外文OA文献 >Modeling solvent effects on electron spin resonance hyperfine couplings by frozen-density embedding
【2h】

Modeling solvent effects on electron spin resonance hyperfine couplings by frozen-density embedding

机译:通过冻结密度嵌入对溶剂对电子自旋共振超精细偶合的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we investigate the performance of the frozen-density embedding scheme within density-functional theory [J. Phys. Chem. 97, 8050 (1993)] to model the solvent effects on the electron-spin-resonance hyperfine coupling constants (hfcc's) of the H2NO molecule. The hfcc's for this molecule depend critically on the out-of-plane bending angle of the NO bond from the molecular plane. Therefore, solvent effects can have an influence on both the electronic structure for a given configuration of solute and solvent molecules and on the probability for different solute (plus solvent) structures compared to the gas phase. For an accurate modeling of dynamic effects in solution, we employ the Car-Parrinello molecular-dynamics (CPMD) approach. A first-principles-based Monte Carlo scheme is used for the gas-phase simulation, in order to avoid problems in the thermal equilibration for this small molecule. Calculations of small H2NO-water clusters show that microsolvation effects of water molecules due to hydrogen bonding can be reproduced by frozen-density embedding calculations. Even simple sum-of-molecular-densities approaches for the frozen density lead to good results. This allows us to include also bulk solvent effects by performing frozen-density calculations with many explicit water molecules for snapshots from the CPMD simulation. The electronic effect of the solvent at a given structure is reproduced by the frozen-density embedding. Dynamic structural effects in solution are found to be similar to the gas phase. But the small differences in the average structures still induce significant changes in the computed shifts due to the strong dependence of the hyperfine coupling constants on the out-of-plane bending angle.
机译:在这项研究中,我们研究了密度泛函理论中冻结密度嵌入方案的性能[J.物理化学97,8050(1993)]来模拟溶剂对H2NO分子的电子自旋共振超精细偶合常数(hfcc's)的影响。该分子的hfcc关键取决于NO键与分子平面的平面外弯曲角度。因此,与气相相比,溶剂效应既可以影响给定结构的溶质和溶剂分子的电子结构,也可以影响不同溶质(加溶剂)结构的可能性。为了对溶液中的动力学效应进行精确建模,我们采用了Car-Parrinello分子动力学(CPMD)方法。为了避免这种小分子的热平衡出现问题,将基于第一原理的蒙特卡洛方案用于气相模拟。小型H2NO-水团簇的计算表明,由于氢键作用而引起的水分子的微溶剂化作用可以通过冻结密度嵌入计算来再现。即使采用简单的分子密度总和法求出冻结密度也可以得到良好的结果。这允许我们通过使用许多显式水分子进行冻结密度计算来涵盖CPMD模拟中的快照,从而还包括大量溶剂的影响。溶剂在给定结构上的电子效应通过冻结密度嵌入得以再现。发现溶液中的动态结构效应类似于气相。但是,由于超精细耦合常数对平面外弯曲角的强烈依赖性,平均结构中的细微差异仍会引起计算出的位移的显着变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号